Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

نویسندگان

  • Derya Ozuolmez
  • Hyunsoo Na
  • Mark A. Lever
  • Kasper U. Kjeldsen
  • Bo B. Jørgensen
  • Caroline M. Plugge
چکیده

Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA).

Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C(18:1), unsaturated LCFA) or palmitate (C(16:0), saturated LCFA), was studied by denaturing g...

متن کامل

Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria.

In the analysis of an ethanol-CO(2) enrichment of bacteria from an anaerobic sewage digestor, a strain tentatively identified as Desulfovibrio vulgaris and an H(2)-utilizing methanogen resembling Methanobacterium formicicum were isolated, and they were shown to represent a synergistic association of two bacterial species similar to that previously found between S organism and Methanobacterium s...

متن کامل

Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments.

The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by ...

متن کامل

On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.

The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogeni...

متن کامل

Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease.

Human subgingival plaque biofilms are highly complex microbial ecosystems that may depend on H(2)-metabolizing processes. Here we investigated the ubiquity and proportions of methanogenic archaea, sulfate reducers, and acetogens in plaque samples from 102 periodontitis patients. In contrast to the case for 65 healthy control subjects, hydrogenotrophic groups were almost consistently detected in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015